Oraciones simples y compuestas: qué son, ejemplos y características

Te explicamos qué son las oraciones simples y compuestas, qué propiedades tienen y qué diferencias tienen con una oración.

oraciones simples y compuestas
Las oraciones expresan una relación lógica entre un sujeto y un predicado.

¿Qué son las oraciones simples y compuestas?

En lógica y matemáticas, las proposiciones son enunciados o enunciados Afirmaciones a las que se les puede dar un valor verdadero o falso, según el caso, y que expresan una especie de relación lógica entre un sujeto (S) y un predicado (P). Las oraciones están relacionadas entre sí por juicios, y son la base del sistema deductivo e inductivo de la lógica formal.

Una primera clasificación de declaraciones ofrece ahora dos tipos básicos de declaraciones, teniendo en cuenta su estructura interna:

  • sugerencias simples. O enunciados atómicos, tienen una formulación simple sin negaciones y uniones (conjunciones o disyunciones) de modo que representan un único concepto lógico.
  • oraciones compuestas. O declaraciones moleculares, tienen dos términos conectados por un enlace, o usan negaciones en su formulación, lo que lleva a estructuras más complejas.

Para una mejor comprensión, ahora consideraremos cada caso individualmente.

Te puede ayudar: argumento

sugerencias simples

Una sugerencia simple es todos aquellos en los que no hay operadores lógicos. Es decir, aquellos cuyo enunciado es preciso, simple, lineal, sin conjunción ni negación, sino que expresa un contenido de forma sencilla.

Por ejemplo: «El mundo es redondo», «Las mujeres son personas», «Un triángulo tiene tres lados» o «3 x 4 = 12».

oraciones compuestas

Por otro lado las oraciones compuestas son aquellas que contienen algún tipo de operadores lógicoscomo negaciones, conjunciones, disyunciones, condicionales, etc. Generalmente tienen más de un término, es decir, están formados por dos oraciones simples entre las que existe algún tipo de conexión lógica condicionante.

Por ejemplo: “Hoy no es lunes” (~p), “Ella es abogada y es de Irlanda” (pˆq), “Llegué tarde porque había mucho tráfico” (p→q), “Voy a hacer tortilla de cena o me voy sin comer” (pˇq).

Otro tipo de sugerencias

Según la lógica aristotélica, existen los siguientes tipos de enunciados:

  • universales afirmativos. Todos los S son P (donde S es universal y P es especial). Por ejemplo: «Todas las personas necesitan respirar».
  • universales negativos. Ningún S es P (donde S es universal y P es universal). «Ningún hombre vive bajo el agua».
  • Gente Afirmativa. Algunos S son P (donde S es particular y P es particular). «Algunas personas viven en Egipto».
  • declaraciones negativas. Algunos S no son P (donde S es particular y P es universal). «Algunas personas no viven en Egipto».

valor de verdad de un enunciado

El valor de verdad o valor de verdad de un enunciado es un valor que indica si es verdadero (V) o falso (F).a veces representado como 1 y 0.

Conocer este dato nos permite saber cuándo una proposición es una contradicción (tanto verdadera como falsa al mismo tiempo) y nos permite trasladar su enunciado a otros sistemas lógico-formalescomo el álgebra o el código binario.

Para determinar el valor de verdad de un enunciado, primero debemos expresarlo en lenguaje simbólico, formularlo lógicamente e introducir los valores verdadero y falso en cada uno de sus términos para formar lo que se denomina una “tabla de verdad”. en el que se expresan las posibilidades del valor de verdad de la oración.

Esto se puede resumir de la siguiente manera:

Guau pq pq p→q p↔q pΔq
VV v v v v F
t.f. F v F F v
VF F v v F v
FF F F v v F

Los símbolos utilizados anteriormente significan:

  • ˆ (y): conjunción.
  • ˇ (o): disyunción.
  • → (Si… entonces): condicional.
  • ↔ (si y solo si): bicondicional
  • Δ (o bien… o bien): disyunción exclusiva

Por ejemplo, la oración «Si y solo si gano la lotería, entonces compraré una casa» se expresaría simbólicamente como: p («Gano la lotería») ↔ q («Compraré una casa») , porque si no en Si gano la lotería, no podría comprarlo. Sus valores de verdad serían:

  • Verdadero. Si gana la lotería y compra la casa (p = V q = V), o si no gana la lotería y no compra la casa (p = F q = F).
  • falso. En los casos restantes, es decir, que no gana la lotería pero igual compra la casa (p = F q = V), o que gana la lotería y no compra nada (p = V q = F).

sugerencia y oración

La diferencia clave entre una oración y una oración es que la primera puede tener múltiples oraciones de la segunda, es decir Las oraciones son parte de una oración..

Esto se debe a que la oración es una unidad de significado más grande y completa que por sí sola tiene todo el significado que necesita mientras Una oración es una unidad de significado más pequeña e incompleta. esto requiere que el resto pueda expresar plenamente su significado.

Por ejemplo, la oración «Quiero ir al cine, pero no tengo dinero» contiene dos afirmaciones:

  • p = quiero ir al cine
  • ~q = no…

Deja una respuesta

Tu dirección de correo electrónico no será publicada.